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Outline 

• Overview of some ways to go wrong in making decisions 

– Common deficiencies in reasoning and in modeling 

• Thinking clearly about uncertainty 

• Case Studies 

• Concluding Thoughts 
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For each: 

• Recap the history 

• Discuss what went 

wrong (or right), and 

possible reasons why 



The Hidden Traps in Decision Making 
(Hammond, Keeney, Raiffa in Harvard Business Review) 

• Anchoring: Giving disproportionate weight to the first 
information you receive 

• Status quo: Favoring alternatives that perpetuate the 
existing situation 

• Sunk costs: Making choices in a way that justifies past, 
flawed choices 

• Confirming evidence: Seeking information that 
supports your existing point of view 

• Estimating and forecasting: Being overly influenced by 
vivid memories when estimating 
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Some Causes of DM Failures 

• Pressure to get the “right” answer 

• Rush to judgment 

– Schedule/cost pressure 

• Competing priorities 

– Safety vs. economics 

– Missing a milestone may 
affect others 

• Convenient explanations 

– New characteristics/issues 
attributed to existing or 
known causes 

• Failure to perceive a problem  
once it has occurred 

• Groupthink 

• Malice 

• Correctly answering the wrong 
question 

• Overgeneralization 

• Illogical reasoning 

– Flawed thought process 

– Incorrect consideration of 
causal mechanisms 

• Lack of information distribution 

– Analysis insights and 
recommendations do not get 
distributed or are ignored 

• Failure to anticipate a problem 

– Failure to attempt to solve it 
after it has been perceived  

• Simple errors 

Can you think of any other causes?? 



Modeling Errors in General 

• Poor formulation of Inputs to Bayes’ Theorem 

– Incompleteness: Insufficient space of competing 
hypotheses 

– Prior 

– Likelihood model 

• Poor [simulation] model 

• Normalization of Deviance 
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Bayes’ Theorem:  

• Bayes’ “theorem” states that  

 

 

 

• where  

– Hi represents a hypothesis whose probability is to be 
updated with new evidence, 

– p(Hi ) is the prior probability of Hi, 

– E represents a new piece of evidence,  

– p(x|y) is the conditional probability of x given y, 

– p(E), the prior probability of the observed evidence 
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p H i | E( ) = P H i( )
p(E |Hi )

p(E)
,

p(E) = p(E |Hi )p(H i )
i

å



Application of Bayes’ Theorem:  
Gorillas in the room 

• Structure of the hypothesis space: what ARE the {H}? 

– As in the “ESP example” (later slides) 

– Other examples abound 

• Selection (formulation) of the prior p(H) 

– In this class, limited time for discussion 

– Other NRC classes (e.g., P-102, P-502) consider 
this topic in more detail 

• Modeling of the likelihood p(E|Hi) 

– If you’re comparing a model to data, then this 
includes all sorts of things, not least model form 
uncertainty 
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Really only one gorilla 

• Bayes’ “theorem” states that  

 

 

 

 

• Everything on the right-hand side includes modeling 
choices made by the user 

• So the “theorem” is an identity, but you can still go very 
wrong 

• We have met the enemy, and he is us 
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p H i | E( ) = P H i( )
p(E |Hi )

p(E)
,

p(E) = p(E |Hi )p(H i )
i

å



Completeness (of hypothesis space) 
(Probability Theory: The Logic of Science, E. T. Jaynes) 

• Consider an experiment to determine whether an individual 
has extrasensory perception (ESP) 

– Experiment involves seeing whether individual can sense 
which of several possible cards is held 

• It’s possible to guess correctly sometimes, but EXTREMELY 
unlikely to guess correctly a large fraction of the time 

• Consider two hypotheses: yes (ESP) and no (no ESP) 

• Establish prior probabilities for these two hypotheses 

• The data come in. The individual gets everything right. You 
update your prior with data, and it looks like the individual has 
ESP. 

• What do you conclude? 
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• At this point, Jaynes would admit a third hypothesis: 
deception 

• The answer YOU get may not be the answer Jaynes 
gets 

– But his posterior will assign higher probability to 
“deception” than to ESP 
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Completeness (of hypothesis space) 
(Probability Theory: The Logic of Science, E. T. Jaynes) 
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Real World vs. Models 

• Risk models must be 
constantly and critically 

– Reexamined for 
consistency with 
system 
configuration/ 
operation 

– Updated with 
relevant information 
(e.g., accident 
precursor 
analysis…) 

• To ensure closest 
correlation and fastest 
convergence between 
“real world” and the 
“risk model” 
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Analysis of precursor events (1 of 3)  
(per Bier and Mosleh) 

• “According to the particular model considered in this 
work [Bier and Mosleh], the frequency of a rare event 
[e.g, an accident] can be represented as  

 

 

• where  

–  f= frequency of the rare event of interest. 

–  li= the frequency of precursor type i. 

–  Pi = the conditional probability of the event of 
interest, given a precursor of type i. …” 
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f = liPi
i=1

n

å



• Your prior state of knowledge: you think that 

– P is of order unity, with some uncertainty  

• if event i occurs, we will almost surely have an 
accident. 

–  l is very small, with uncertainty. 

• Event i isn’t going to happen.  

– Therefore, f is small, with uncertainty. 

• Now you observe event i, but it doesn’t lead to an 
accident. What do you conclude? 
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Analysis of precursor events (2 of 3)  
(per Bier and Mosleh) 



• Some people are cheered up by observation of i, but no 
accident, because P must be smaller than they thought. So 
after a few occurrences, they worry less about this class of 
events. 

• This is closely related to “normalization of deviance.” 

• Bier and Mosleh did the math (Bayesian updating) 

• Yes, P goes down from its prior. But l goes UP from its prior, 
potentially a lot. 

– The prior said this would be very rare, but it happened. 

• Details may vary, but in examples of this type, the 
posterior estimate of f usually goes up, not down. 

– This won’t necessarily hold if you also learn other things 
from the event, such as things that change your 
phenomenological model 
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Analysis of precursor events (3 of 3)  
(per Bier and Mosleh) 



Objective 

• Our primary objective in this course is to: 
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Improve the NRC staff’s awareness of the factors that 

contribute to uncertainty in predictive models and the 

need to identify, characterize and communicate the 

uncertainties to the risk-informed decision-maker 
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Subsidiary objectives 

• Review NRC efforts to predict initiation/progression of passive 
system degradation phenomena and assess associated risk 

– Emphasis on cases where inappropriate extrapolation from 
known data to unknown situations resulted in poor decisions 

• Improve NRC staff understanding of  

– Risk assessment 

– PRA quality for issues such as passive component degradation 

• Reinforce need to evaluate overall adequacy/validation of physical 
and logical models used to support decision-making 

• Clarify expectations regarding communication of adequacy of 
specific models 
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Background 

• Davis-Besse reactor pressure vessel head wastage 
event 

– Boric acid wastage believed to not be a concern 

– NRC decision to allow continued operation made 
with incomplete and faulty information 

– Post-event evaluations revealed this to be highly 
significant issue 

• GAO was highly critical 

– Leading to LIC-504  

among other things 

http://nirs.org/photogallery/davisbesse/dbhole.jpg


THINKING CLEARLY ABOUT 
UNCERTAINTY 

19 
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Uncertainties in Models Characterized 

• Our “model of the world” 

• In the scientific and 
engineering community, 
uncertainties generally 
are separated into two 
categories 

– Random/stochastic 

• or “aleatory” 

– State of knowledge 

• or “epistemic” 
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Aleatory 

• Aleatory models represent randomness in the outcome of a process 

– For example, flipping a coin is “random” process 

• Often modeled by a binomial distribution 

• Characterize # of heads (or tails) seen for given # of flips 

• When flipping a coin, the “random,” but observable, quantity is 
number of heads/tails 

• Probabilities are not observable  

– We rely on model (such as binomial) to estimate probability 
for certain outcomes (e.g., two heads out of three coin tosses) 

• These are the same models we described as “probabilistic” 

Definition of aleatory: 

Pertaining to stochastic events, the outcome of which is described by a 

probability.  From the Latin alea (game of chance, die).  
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Aleatory 
• In passive system modeling, aleatory uncertainty includes 

– All “stochastic” or “random” processes (e.g., vortices in fluid flow, 
ionizing radiation effects, crack growth) 

• Aleatory uncertainty is really a modeling choice 

– Represents a complex (some might say irreducible) phenomenon that 
resists deterministic modeling 

• Predicting decay event is the classic example 

• Why might a “random” process be too complex for deterministic modeling? 

– Very sensitive to initial conditions (chaotic) 

– Aleatory model sufficient for decision making 

– Too resource intensive to develop deterministic model 

– Causal factors not well understood 

 

Operationally, if we engineer systems that are as close 

to identical as we can make them, and they don’t 

behave identically, there is “aleatory” uncertainty 

Example: Light bulbs burning out at different instants 
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Epistemic 
• Epistemic uncertainty represents how accurate our state of knowledge is 

about the model, regardless of the model type 

• Within this type of uncertainty, we include a laundry list of elements 

– Imperfect knowledge of the model parameters (i.e., parametric 
uncertainty) 

– Issues on the model itself (i.e., modeling uncertainty) including 

• Simplifications 

• Competing models (model form uncertainty) 

• Truncation 

• Scope 

• Completeness 

– Errors during quantification 

Definition of epistemic: 

Pertaining to the degree of knowledge of events.  From the Greek episteme 

(knowledge). 
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Epistemic 

• Parametric uncertainty typically does get evaluated 

– Model parameter information may have differing degrees of 
certainty 

• Decay constant for our radioactive decay model is typically 
known very accurately 

• However, it is possible that other epistemic uncertainties have a 
larger impact on overall results 

– Model error or uncertainty may be more significant than those 
associated with other epistemic impacts 

– Modeling uncertainty (from NUREG/CR-6311) 

 “variability in model prediction due to plausible alternative 
input values (input uncertainty) or to plausible alternative 
model structures (structural uncertainty).” 
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Epistemic 

• In passive system degradation modeling, epistemic uncertainty includes 

– The selection and construction of the passive failure model 

• Parametric formulation (e.g., use of the KWU-KR or EPRI-Chexal-
Horowitz FAC model) 

• Time discretization and geometry nodalization 

• Boundary conditions (e.g., initial states, transition properties) 

– Model parameter information 

• Flow rates, temperatures, corrosion rate, material properties, 
exposure time, fluxes, etc. 

– Model limitations (especially phenomenological ones) 

• In probabilistic fracture mechanics (PFM) epistemic uncertainty includes 

– Generalized flaw distributions 

– Neutron irradiation embrittlement data bases 

– Neutron fluences 
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Epistemic  precision or 
accuracy? 

• Imagine that you are a materials scientist at 
the NRC studying radiation-induced damage 
of a new shielding material 

– The modeling has taken several years 

• You publish your results and find they are 

– Praised for their precision 

– Criticized for their lack of accuracy 

• How is this possible? 

– Precision is measured with respect to 
detail 

– Accuracy is measured with respect to 
reality 

• In PRA applications, sometimes criticized for 
over-precision 

– Bias leading to underestimating the 
overall uncertainty 

• We usually can’t tell how “accurate” we are 
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Integrated Decision Making 

• Uncertainty in deterministic and 
probabilistic models comes from 
our imperfect knowledge  

• Integrated decision making uses 
existing regulations, defense in 
depth, safety margins, risk, and 
performance monitoring 

– Risk models allow explicit 
treatment of some uncertainty 

– These models (both 
probabilistic and 
deterministic) cannot be 
complete 

• One reason for the risk-
informed approach to 
regulatory decision-
making 

Integrated 
Decision 
Making 

Defense  
In depth 

Safety 
margins 

Increase 
in risk or 
CDF is 
small 

Monitoring 

Change 
meets 

current 
regulations 
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Workshop 

You are asked to develop a model that predicts the 
probability your car will fail to start tomorrow morning 

• Identify the basic structure of your model 

– Inputs, assumption, boundary conditions, etc 

• What are sources of uncertainty? 

• How would you characterize those uncertainties? 

– Epistemic vs. aleatory 
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Characterize the Uncertainties 

• Uncertainties only make 
sense in the context of a 
"frame of reference“ 

– Every probability is a 
conditional probability 

• The same can be said for 
deterministic models we use 

• The models themselves 
have pretty rigid "frames of 
reference:" where, when, 
how, and why they are 
applicable 

– When used outside 
these realms, the 
uncertainty may become 
large (to the point of 
ignorance) 
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Characterizing the Uncertainties 

• However, several methods are available to characterize analysis 
uncertainty 

– Probabilistic 

• Bayesian numerical methods 

– Other 

• Sensitivity studies 

• Graphical methods 

• Recall that models have a “frame of reference” 

– Key features that will drive uncertainty in any model include 

• Simplifying assumptions that are made 

• Boundary/initial conditions that are specified 

• Range of applicability of the model 

~Everything should be as simple as possible, but not simpler.  

 ---Widely Attributed to A. Einstein  
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Characterizing the Uncertainties 

• Sensitivity analysis is not the same as an uncertainty analysis 

• Uncertainty analysis yields a (possibly large) set of plausible outcomes 

– These outcomes are tied to their likelihoods via a probability 
distribution  

• Sensitivity analysis determines a relative change in the model output given 
changes in 

– Input parameters 

– Model structure 

• Sensitivity analysis yields a “localized” what-if analysis 

– The likelihood of the input actually taking the value specified is not 
addressed 

– Possible to evaluate conditions that, in practice, may not occur 

• Sensitivity analysis can tell you which parts of the model are driving your 
results 

– This is critical information for decision makers 
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Characterizing the Uncertainties 
• Reality checks are a key element to model validation, analysis, and 

decision making 

• Different types of checks are used 

– Comparing analysis results (predicted outcome) with past or near-term 
future events 

• Common technique in PRA – can be used to see if specific 
outcomes (e.g., an initiator and a component failure) occur 

• Some events, however, are rare – we would not expect to see 
them even over a long period of time 

• Some events we may not have in the PSA (e.g., passive system 
failures) – do we see these events? 

– Comparing like events 

• Decision makers frequently have to make preference decisions – 
indifferent options should truly be equal 

– Boundary condition checks 

• Do “worst case” conditions make sense? 
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Characterizing the Uncertainties 
• Reality checks useful for 

unvalidated models 

– Uses available opportunities 
to check model predictions 
against observations 

– These checks typically 
involve observable effects 
that correspond to 
intermediate calculation 
results 

• Example: for control rod drive 

circumferential cracks  

– Improved models predict the 

correct total number of 

circumferential cracks that 

were found in the seven B&W 

reactors 

– However, predictive size 

distribution was optimistic for 

larger (> 60°) cracks 

 

• To predict nozzle failure, must 

predict a frequency of occurrence 

for cracks twice the size of the 

largest found  

• With the models already under-

predicting at 165° 

– What is prediction error at 

330°? 

– Models most likely to be non-

conservative 

• The best predictions (W. Shack at 

ANL): 
 

      Observed    Predicted 

  angle # found    #     st 
dev 
30     7       9.0     2.0 
60     4       2.8     1.1 
90     3       2.4     1.0 
120    2       1.7     0.8 
150    2       1.3     0.6 
165    2       1.1     0.5 
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Characterizing the Uncertainties 

• Graphical methods  

– A tool for looking for and thinking about trends, 
outliers, patterns, and other behavior 
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Characterizing the Uncertainties 

• A variety of numerical methods and tools are available 
to provide quantify uncertainty, for example: 

– Analytical 

– Monte Carlo sampling (e.g., via tools like SAPHIRE) 

– Bayesian probability quantification 

– Classical statistical approaches 

• These are in addition to the methods and tools specific 
to materials degradation, structural analysis, and 
thermal-hydraulics 



Characterizing the Uncertainties 
• Monte Carlo sampling 

– Approximates model 
output by generating a 
large random sample 
from the input 
distributions 

• Useful for propagating 
uncertainties through 
deterministic physical 
model 

– Fault tree in PRA 

– FAC prediction using 
corrosion model 

– Flow rate of a pump via 
thermal-hydraulics code 

• The Monte Carlo 
sampling process: 

– Randomly sample a 
value of each parameter 

• Each sample is used to 
calculate the quantity 
represented by the model 

– This sampling process is 
repeated many times 

• Use new sampled values 
of the parameters on 
each iteration 

• Obtain many calculated 
values of desired result 

– Resulting values are a 
pseudo-random sample 
from the epistemic 
model distribution 36 
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Characterizing the Uncertainties 

• However, one needs to critically question numerical 
methods such as Monte Carlo 

– Are the models/distributions applicable? 

– Are we seeing convergence in results? 

“Dilbert” Scott Adams 
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Characterizing the Uncertainties 

• SAPHIRE risk assessment software is NRC-sponsored PRA tool to 

– Model a system’s response to upset conditions (initiating events) 

– Quantify associated outcome frequencies 

• For nuclear power plant applications, SAPHIRE can 

– Identify important contributors to core damage (Level 1 PRA) 

– Analyze containment performance during a severe accident in order to 
quantify radioactive releases (Level 2 PRA) 

– Has five built-in common aleatory models 

• Poisson and binomial-based 

– Has 13 built-in common epistemic distributions 

• For example, lognormal, gamma, beta, normal, … 

– Can be extended to allow other aleatory or deterministic models 

• For example, the FAC calculations described in NUREG/CR-5632 
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Characterizing the Uncertainties 

• Keep in mind that simply having a model does not guarantee 
certainty 

• May be missing a variety of uncertainties such as 

– Partial correlation between events 

– Modeling issues such as realism, exclusions, and errors 

• In the Davis-Besse post analysis, two detailed clad failure models 
were available 

– Initial model appears incorrect for this event 

– Averaging the two models also does not provide correct 
representation 

– If a high degree of belief is put on the wrong model (even if it is 
a complex, computer-based model with uncertainty sampling) 

• Decisions made based on that model may not adequately 
protect the public 
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Communicating the Uncertainties 

• To effectively communicate implies 
that the spectrum of information 
related to the process being modeled 
is understood by all 

• Need to realize that 

– Not all information will be known 

– What information is known will be 
imprecise 

– Information content will change 
over time 

– The value placed on different 
types of information will differ 
depending on how it is used 

Decisions

Information

Uncertainty

Deterministic 
Models

Probabilistic 
Models

Communication
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Communicating the Uncertainties 

• Additional sources of information 

– Effective Risk Communication (NUREG/BR-0308) 

• The Nuclear Regulatory Commission's Guideline 
for External Risk Communication 

– Effective Risk Communication (NUREG/BR-0318) 

• Guideline for Internal Risk Communication 

– LIC-504 

• Documents uncertainties and technical basis for 
use by decision-makers 
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Communicating the Uncertainties 

• In the Davis-Besse post analysis, two clad failure models were available 

– What would have happened if decision-makers were told that the 
initial model was fine? 

• Their info would have been clad failure pressure of  6500 psi 

• Probability of failure at 2150 psig would have been in the 1E-6 
range 

• They would have concluded clad failure unlikely (with high 
confidence) 

– This is the wrong answer (with high confidence!) 

• A lack of diversity of opinions about what model to apply blocks critical 
thinking 

• Need to ask questions such as 

– How do I know what I “know”? 

– How wrong can I be if I guess wrong about what I don't know? 

• Need to discuss with the decision-makers about how much we believe 
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Communicating the Uncertainties 

• When discussing models, conditions, or approaches, we might 
consider alternatives if available model is 

– Old or obsolete 

– New (unvalidated) or unfamiliar 

– Not applicable for specific issue 

– Of limited scope 

– Overly optimistic/overly pessimistic 

– Opaque (assumptions not clear, modules unexplained) 

– Difficult or expensive to use 

– Does not provide uncertainty or other required output 
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Communicating the Uncertainties 

• One roadblock to effective 
communication is bias 

• How do we overcome bias? 

– To reduce bias, one must be 
actively attempting to do so 

– For example, rather than 
thinking "How does this 
support my beliefs?" think 
"What might this mean?" 

• When performing an analysis, 
suspend early judgment or 
expectations 

• Everyone has subconscious 
biases… 

– But a questioning attitude can 
reduce these 

• Questions to think about when 
critically thinking include: 

– What is meant by _______? 

– How did you come to that 
conclusion? 

– Why do you think that is 
correct? 

– What are your sources? 

– What assumptions drive that 
conclusion? 

– What happens if this is 
incorrect? 

– What is an alternate 
explanation for this 
phenomenon? 
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Communicating the Uncertainties 
• Critical thinking provides a useful communication process 

– List results from all relevant models and collect arguments, data, and 
analysis supporting each 

• These results may be probabilistic, graphical, outcomes of 
sensitivities, or reality checks 

– Break the conclusions into key statements 

• Then note additional implications from these 

– Examine statements and implications for internal contradictions 

– Describe the results, including plausibility, of conflicting or alternative 
models 

• Models with strong support should provide more evidence than 
weaker models 

– Require sufficient support to justify any claims or assumptions, 
otherwise, ignore these when making decisions 

Critical thinking is a process of critiquing statements, examining the 
evidence/model, and forming judgments about results 
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Communicating the Uncertainties 

• Be committed to an open and objective process that recognizes 
validity of multiple perspectives in keeping with NRC’s principles of 
good regulation — independent, open, efficient, clear, and reliable 

• Use a flexible, problem-solving approach to meet needs of the 
agency, specific stakeholders, and situations 

• Identify proactive steps to develop trust and credibility, raise 
awareness, and build relationships 

• Be broadly supportive within the organization (not just within a 
specialized function) 

• Emphasize two-way communication among risk analysts, 
engineers, decision makers, and the public about data, 
assumptions, values, etc. 

NUREG/CR-6840 - The Technical Basis for the 

NRC's Guidelines for External Risk Communication 
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Communicating the Uncertainties 

• How can we do this better? 

– Be more proactive 

– Listening to collaborator needs 

– Understand everyone’s role in the decision process 

– Commit resources 

– Strive for consistency (common understanding) 

• Management will be responsible for considering 
uncertainties that are communicated 

• Do you have any examples you would like to share? 

NUREG/CR-6840 - The Technical Basis for the 

NRC's Guidelines for External Risk Communication 



CASE STUDIES 

Challenger 

Davis-Besse vessel head wastage 
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CHALLENGER 
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Results of Retrospective Analysis on Shuttle Risk 

0
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Chronological Flight Number

Backward-Look PRA Results 
Accounting for Revealed LOC 
Accidents
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LOC Accidents

RU is the contribution of UU 
scenarios to the P(LOC) level

Final System Risk

RU

Risk from Known Scenarios

Actual Risk (Known + UU Scenarios)

RK

Source: Shuttle Risk Progression: Use of the Shuttle Probabilistic Risk Assessment (PRA) 

to Show Reliability Growth, Teri L Hamlin et al. (AIAA, 2010) (downloadable from  

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110004917_2011004008.pdf) 

“Experience without theory is blind, but theory without 

experience is mere intellectual play” -- Immanuel Kant 
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NASA Challenger Example 

• Space Shuttle 
Challenger O-rings 

– How do we model 
failures when no 
experience at low 
temperatures 

– “The decision to 
launch the Challenger 
was flawed” 

• From the Report of the 
Presidential Commission 
on the Space Shuttle 
Challenger Accident 

Morton Thiokol engineers focused 

only on failure events. 

 

Failures occurred at different 

temperatures, leading to (incorrect) 

conclusion of no temperature 

dependence on o-ring performance 
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NASA Challenger Example 

• 1986 Challenger launch predicted at 26-29 degrees F 

– How can we identify, characterize, and 
communicate uncertainties? 

Chart by Edward Tufte 

"Clear and precise seeing becomes as one with clear and precise thinking” Tufte  



Appendix  F [of the Rogers Report]- Personal 
observations on the reliability of the Shuttle    
by R. P. Feynman 

• A mathematical model was made to calculate erosion. 
This was a model based not on physical understanding 
but on empirical curve fitting. … There is nothing 
much so wrong with this as believing the answer!  

• Uncertainties appear everywhere. How strong the gas 
stream might be was unpredictable, it depended on 
holes formed in the putty. Blow-by showed that the ring 
might fail even though not, or only partially eroded 
through. 

• The empirical formula was known to be uncertain, for it 
did not go directly through the very data points by 
which it was determined. There were a cloud of points 
some twice above, and some twice below the fitted 
curve, so erosions twice predicted were reasonable 
from that cause alone. … 
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Which of the previously-mentioned decision-making or 
modeling faults occurred in the handling of the Challenger 
event? What kinds of uncertainty operated? 

• Previously Mentioned Modeling Deficiencies & 
Decision-Making Traps:  

– Anchoring 

– Status quo 

– Sunk costs 

– Confirming evidence 

– Estimating and forecasting 

– Incompleteness 

• Hypothesis space 

• Model 

– Normalization of Deviance 
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DAVIS-BESSE VESSEL HEAD 
WASTAGE 
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Davis-Besse Vessel Head Timeline 

Davis-Besse Reactor Vessel Head Degradation 

Lessons-learned Task Force Report 



Indications: Leakage and Filter 
Replacements 

57 

Things are 

getting worse… 

Leakage, Filter 

Replacements 

… but why? 

Nobody 

knew. 

Would existing guidance on screening precursors tell 

an analyst to follow this up, or not? 
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Davis-Besse Vessel Head Example 

Davis-Besse Reactor Vessel Head Degradation 

Lessons-learned Task Force Report 
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Background 

• Why is objective important? 

– NRC tasked with ensuring public health and safety 

• Need to be critical of modeling process 

– Problems have occurred that undermine public 
confidence in this task 

• For example, Davis-Besse vessel head corrosion 
led to a major degradation in safety (“significant 
precursor”) 
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Davis-Besse Vessel Head Example 
• Several breakdowns occurred when considering the Davis-Besse 

control rod drive nozzle probable leakage issue 

1. Misguided focus on small leaks 

• Large leaks through axial cracks were the expected result 
of degradation until small leaks were found (Oconee, 
2001) to have resulted in OD circumferential cracking 

• Thereafter, large leaks were not considered by analysts 

2. Review staff was directed to not address probable technical 
specification violation 

• Compliance with existing regulation one of the five criteria 
of NRC integrated decision making  

3. Evidence of “groupthink” 

• Prevailing thought was a small leak on a 600°F head 
would result in dry boric acid deposits that would not 
create significant wastage 
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Davis-Besse Vessel Head Example 

4. Lack of communication 

• EPRI technical report* documenting rapid wastage due to 
boric acid leaks onto hot surfaces received at NRC 
around the same time as Davis-Besse risk-informed 
submittal 

• Report was not reviewed until later 

5. Lack of critical thinking about the process 

• A check with a steam table shows that 

– 0.1 gpm leak leaves 0.05 gpm of saturated water 

– This water can remove heat by evaporation faster 
than it can be conducted through 6” of RPV steel (or 
even ¼” of clad after wastage) over a 20 inch2 area 

• Consequently, boric acid never allowed to dry out 

 * Boric Acid Corrosion Guidebook 
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Davis-Besse Vessel Head Example 

6. Thought knew where leak was coming from 

• Licensee believed all deposits seen on head came from flange 
leaks above the head 

– There had always been flange leaks above the head… 

• Thought this even though containment conditions had recently 
changed due to RCS leakage 

• During post-event analysis (after 2002) did not consider clad cracking (did 
not apply knowledge from other events) 

– Initial NRC and licensee modeling of bottom of the wastage cavity 
structural integrity did not consider stress corrosion cracking of clad 

– These cracks were found in the laboratory after a year of analysis 

• SCC of stainless steel in an oxygenated environment is a well-
known phenomena 

– Did not understand effects of cracks on clad integrity 

• Wrong failure mechanism model was assumed (based on tests 
with plate material) until ORNL obtained data of crack effects on 
clad material 
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Davis-Besse Vessel Head Example 

• Wrong model for clad 
failure evaluation 

– Cracking was more 
extensive than first 
thought 

– The originally-
believed failure 
mechanism (blue 
upper region) 
appears not 
applicable 

– Later model (yellow 
lower region) better 
fits observed behavior 
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Outcomes of Davis-Besse 

• Lessons learned task force identified a number of 
weaknesses in NRC practices 

 

Including: failure to understand uncertainties and communication 

between modelers and decision-makers 

 

“For future risk-informed decision-making actions involving 

passive components, the staff should provide decision-makers 

with a written assessment of the adequacy of the specific 

models used for the particular decision to be made” 

 



Davis-Besse Issues 

• For Davis-Besse, boric acid leaking onto reactor vessel head judged not to 
be a concern 

• This situation thought not to pose a problem since 

– Previous inspections only identified small leaks, and Staff believed 
only large leaks would cause significant wastage 

• Leaks were not considered a wastage issue because 

– Large leaks dismissed because detection likely 

– Small leaks dismissed as being too small to cause wastage 

– Prompt and effective corrective actions would be taken to repair 
significant leaks 

– Liquid boric acid incorrectly assumed to completely dry when 
deposited on surface of RPV 

• Dry boric acid not rapidly corrosive 
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NRC’s Actions to Oversee Davis-Besse Did Not 
Provide an Accurate Assessment of Safety at the Plant 

• NRC’s inspections and assessments of FirstEnergy’s operations 
should have but did not provide the agency with an accurate 
understanding of safety conditions at Davis-Besse, and thus NRC 
failed to identify or prevent the vessel head corrosion. 

• Some NRC inspectors were aware of the indications of corrosion 
and leakage that could have alerted NRC to corrosion problems at 
the plant, but they did not have the knowledge to recognize the 
significance of this information. These problems were compounded 
by NRC’s assessments of FirstEnergy that led the agency to 
believe FirstEnergy was a good performer and could or would 
successfully resolve problems before they became significant 
safety issues. 

• More broadly, NRC had a range of information that could have 
identified and prevented the incident at Davis-Besse but did not 
effectively integrate it into its oversight. 

66 
GAO-04-415, May 2004 
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Information Gathering 

And Technical Analysis 

Step 1 
 

Characterize The Emergent Issue 

Step 2 
 

Define Decision Options 

Step 3 
 

Perform Assessment Of 

Each Decision Option 

Step 4 
 

Integrate Assessment Results 

Step 5 
 

Communicate Assessment 

And Recommendations 

Step 6 
 

Document The Decision 

Step 7 
 

Communicate The Decision 

Technical Activities Risk-Informed Activities Communication Activities 

* 

At any time during the assessment, the 

Caution at the beginning of Section 4.1 or the 

Note at the beginning of Section 4.4.1 may 

be invoked to exit the LIC-504 process. 

* 

LIC-504 Risk-Informed Decision-Making Process 

Legend 

 

Flow path  

Feedback 

Bypass 



LIC-504 

…GAO made the following two recommendations: 

… 

(2) Improve the U.S. Nuclear Regulatory Commission’s (NRC’s) use of 
probabilistic risk assessment (PRA) estimates in decision making by (1) 
ensuring that the risk estimates, uncertainties, and assumptions made in 
developing the estimates are fully defined, documented, and communicated 
to NRC decision makers, and (2) providing guidance to decision makers on 
how to consider the relative importance, validity, and reliability of quantitative 
risk estimates in conjunction with other qualitative safety-related factors. 
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Which NRC decisions related to  

the Davis-Besse vessel-head issue 

would change under LIC-504? 



Which of the previously-mentioned decision-making 
or modeling faults occurred in the handling of the 
Davis-Besse wastage event?  

• Previously Mentioned:  

– Anchoring 

– Status quo 

– Sunk costs 

– Confirming evidence 

– Estimating and forecasting 

– Incompleteness 

• Hypothesis space 

• Model 

– Normalization of Deviance 

69 



CRITICAL THINKING 
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Basics 

Risk-informed decision-making 
requires critical thinking 

– Adequate understanding 
of supporting models and 
analyses 

• Including 
uncertainties 

– Inadequate 
communications between 
analysts and decision-
makers contributes to 
poor decisions 

Critical 

Thinking! 
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Basics 

To facilitate effective 
decisions 

• We need to understand 
the issues 

– For each model and 
each decision 

• Identify the uncertainties 

• Characterize the 
uncertainties 

• Communicate the 
uncertainties 

Effective decision-making requires 

integration of information from many 

sources 



73 

Workshop – Critical Thinking 

• The graph shows the number of 
people entering and leaving a 
building 

• Answer the questions below: 

 

1. During which minute did the most 
people enter the building?   

 

2. During which minute did the most 
people leave the building?  

 

3. During which minute were the 
most people in the building?  

 

4. During which minute were the 
fewest people in the building? From “All models are wrong: reflections on 

becoming a systems scientist,” John Sterman 
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Good Decisions Require Good Input 

• Analysis results 

– Need to be relevant to issue being decided 

– Need to be clearly understood by decision-maker 

– Need to include information on uncertainties 

• Identification 

• Characterization 

• Communication is key element 
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Effective Issue Analysis Process 

• Management and staff need to develop and document 
a common understanding of the issue including: 

– Definition of issue 

i.e., defining decision to be made 

– Development of decision-making approach 

– Selection of acceptance criteria 

– Specification of the technical / risk analyses to be 
performed 

• Role(s) of the technical analysis 

• Define the boundary conditions for the analysis 
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Analyses Support Decision-Making 

• Analyses need to provide basis 
for concluding that… 

– Regulatory position provides 
reasonable assurance of 
adequate protection of public 
health and safety … 

– …. Without imposing undue 
burden on licensees 

• Technical basis for the decision 
should not over-rely on any 
single evidence type (especially 
not PRA)  Integrated 

Decision 
Making 

Defense- 
In-depth 

Safety 
margins 

Increase 
in risk or 
CDF is 
small 

Monitoring 

Change 
meets 
current 

regulation 

Based on Figure 2, “Principles of risk-informed 

integrated decision-making,” from RG 1.174, “AN 

APPROACH FOR USING PROBABILISTIC RISK 

ASSESSMENT IN RISK-INFORMED DECISIONS 

ON PLANT SPECIFIC CHANGES TO THE 

LICENSING BASIS” 
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Definition of Issue 

• What is impact on Plant 

– SSCs or functions affected 

– Changes or departures (e.g., 10 CFR 50.59) 

• Need to assess potential for regulatory concern of 

 degradation mechanism (via RG-1.174 principles) 

– Violates current regulations? 

– Reduces defense in depth? 

– Reduces safety margin? 

– Significantly increases risk? 

– Monitoring/performance measures? 

• Adequate knowledge of current plant conditions? 

– For these, need to consider uncertainty and performance monitoring 

Analyst needs to question the basis for conclusions regarding each 
principle above to determine if it is sufficiently complete and 
accurate to produce a robust answer 
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Definition of the Technical Issue 

• To understand how technical issues should be defined, 
we need to understand how the results will be used 

• According to J. Diamond (“Collapse – How Societies 
Choose to Fail or Succeed” 2005) 

– Failure to anticipate a problem  

– Failure to perceive it once it has arisen  

– Failure to attempt to solve it after it has been 
perceived  

– Failure to succeed in attempts to solve it 

• Davis-Besse incident scored high on these 
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Definition of the Technical Issue 

• Failure to anticipate a problem  

– Prejudging or ignoring a issue, such as ruling out a failure 
mechanism, is a classic way to facilitate spectacular failures 

– In Davis-Besse, large leaks were not considered coupled with 
belief of drying boric acid provided boundary conditions for 
material degradation 

– Precluding events or conditions, even if they are unlikely, 
makes risk-informed decision making impossible 

• Consequently, one key consideration when defining the issue at 
hand is to consider all possibilities 

– With a questioning attitude, critical thinking involves acquiring 
information and evaluating it to reach a well-justified definition 
of the problem 
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Selection of Acceptance Criteria 

• In making a [risk-informed] 
regulatory decision 

– Risk insights are integrated 
with defense-in-depth and 
safety margins 
considerations 

– Degree to which risk 
insights play a role is 
application dependent 

• Quantitative risk results from 
PRA…are generally 
supplemented by qualitative 
risk insights and traditional 
engineering analysis 

 
SECY-00-0162 
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Selection of Acceptance Criteria 

• Acceptance criteria are multi-
dimensional since process has five 
facets 

• Criteria are a blend of deterministic 
and probabilistic 

– For example, meeting current 
regulation may be yes/no or 
probabilistic (Maintenance Rule) 

– The risk metric (CDF) is 
probabilistic 

• Different processes will have 
different criteria 

– Ranges from deterministic to 
probabilistic 

Integrated 
Decision 
Making 

Defense- 
In-depth 

Safety 
margins 

Increase 
in risk or 
CDF is 
small 

Monitoring 

Change 
meets 
current 

regulation 
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Role of Technical Evaluations 

• The potential for regulatory concern is addressed by 
modeling and understanding: 

– Degradation mechanism 

– Structural integrity effects  

– Efficacy of inspections 

– Consequences of potential structural failures on 
plant systems/functions 

– Effects of system failures on risk 

The analyst needs to question the basis for each step of this 

assessment to determine whether it is sufficiently complete and 

accurate to produce a robust answer 
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Technical Evaluation Integrates Models 

• Our different model types 
bring relevant information 
into the process 

 

Defense- 

In-depth 

Change 

meets 

current 

regulation 

Safety 

margin 

Monitoring 

Increase 

in risk or 

CDF is 

small 

Integrated 

Decision 

Making 

More Less Certainty 
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Technical Evaluation 

• The subject of the analysis requires critical thought 

– Should reflect purpose of the analysis 

• Are we evaluating a single plant 

• Or, are we considering the entire industry fleet 

– Uncertainty on parameters in our model can reflect either 

• Statistical confidence on a single “averaged” value 

– Data applies to a specific plant or single application 

• Variability among a population 

– Multiple data sets used to represent many possible 
values of a parameter (one for each member in a 
population) 



85 

Understanding the Role of Analysis 

• The analyst must consider all models and 
processes  
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Understanding the Role of Analysis 
• The rate of corrosion at Davis-Besse 

was specific to that plant 

– If we had information on corrosion 
issues at many plants, what would 
we do with information for our 
analysis?  

• Issue of parameter uncertainty versus 
plant-to-plant variability is key to many 
analyses 

• Plant-specific parameter uncertainty is 
appropriate for producing plant-
specific results 

– From the loss of offsite power 
frequency (23 plants) we can 
obtain an average frequency 

– For what kinds of analysis should I 
use the “average” frequency? 
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Understanding the Role of Analysis 

• Sometimes, population-wide variability is used instead of plant-
specific uncertainties for an “example plant” calculation 

– This probability distribution of the variability can be interpreted 
as probability levels for individual plants not exceeding specific 
values 

• Does not specify the specific plant’s parameter values 

• However, if variability and plant-specific parameter uncertainties 
are mixed in the same analysis, then 

– Mean of the results may be less than the mean for the 
“bounding plant” 

• A “bounding plant” is that with the highest results, where 
results are obtained by using its plant-specific uncertainties 
for all parameters 

• In other words, simply lumping everything together with the 
desire to “bound” all possible outcomes backfires since 
results in middle of the population are reinforced by other 
near-average plants 
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Understanding the Role of Analysis 

• In addition to population 
variability, we may need to 
consider time-based trends 

– For example, evaluating 
corrosion rate (λ) for seven 
years 

• Graphical constructs can 
supplement numerical ones 

– Graph indicates apparent 
decreasing trend over time 

• The what and how of the 
analysis will vary from issue to 
issue 

Plot of lambda

lambda
    0.0     0.5     1.0     1.5

year

[1]

[2]

[3]

[4]

[5]

[6]

[7]
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Analyst’s Responsibility 

• Analyses need to be developed in context with consideration and 
understanding of uncertainties 

– These uncertainties are coming from both YOUR analyses and others 
(including those outside the NRC) 

– Uncertainty treatment requires 

• Effective interaction among analysis team members 

• Critical thinking and a questioning attitude 

– Past analyses have suffered from a lack of this thoroughness 

• There are many sources of uncertainties that need to be considered  

– For example: lack of data, misleading data, competing failure models, 
lack of understanding of processes, extrapolation, bias, … 

• Analyst needs to understand how results will be used in order to 
understand and communicate uncertainties 

– Requires increased interaction among different technical disciplines, 
PRA integrators, and decision makers 
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Analyst’s Responsibility 

• While this course focuses 
on raising the awareness 
of uncertainty in modeling 
and decisions, … 

– Detailed information on 
these topics and 
processes are found 
elsewhere 

– For example, in other 
NRC training courses 

NRC 
Training 

Programs 

LIC-504 
Integrated 

D-M 

P-105 
PRA 

Basics 

Critical 
Thinking 

P-102 
Bayesian 

Probability 

P-200 
System 

Modeling 

P-111 
PRA 

Perspectives 

P-203 
Human 

Reliability 

P-501 
Advanced 

Topics 
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Good Decisions Need More Than Good 
Technical Analyses 

• Decision-makers need to be “educated” about 
analyses 

– Assumptions 

– Boundary conditions 

– Limitations 

– Uncertainties 

• Inadequate communication/education leads to less-
than-ideal decisions 
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Failures in Decision-Making (DM) 

• NASA Challenger 

– Data interpreted without 
seeing temperature 
relationship 

• Davis-Besse 

– Numerous issues and 
failures in the process 

• NASA Columbia 

– Believed foam not an issue 

– Focused on other impacts 

• Fukushima 

– Relied on “Tsunami folklore” 

 

http://images.google.com/imgres?imgurl=http://i.cnn.net/cnn/video/tech/2003/07/07/vo.shuttle.foam.vs.pool.jpg&imgrefurl=http://edition.cnn.com/2003/TECH/space/07/07/sprj.colu.shuttle.investigation/index.html&h=49&w=65&sz=7&hl=en&sig2=-Bcj0ufwoFlsWBbPIIjgSw&start=2&tbnid=mHwLEKxve3pHeM:&tbnh=49&tbnw=65&ei=3mnGRLTlIs30JOm-pKEB&prev=/images?q=foam+smoking+gun+&svnum=10&hl=en&lr=&sa=G
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Workshop – Value Tree 
• Value trees are hierarchical structures 

used to depict values held by decision 
makers 

• They represent a model of values, 
goals, and objectives 

– A value is something a person 
cares deeply about (e.g., minimize 
risk) 

– A goal is a measure directed 
toward a specific outcome (e.g., 
nuclear power risk should be 
small)  

– An objective is a level of 
attainment towards a goal (e.g., 
core damage frequency should be 
less than 1E-6/yr) 

• The example is for a foreign nuclear 
utility 

– Numerical values are weights 

– For example, safety was deemed 
almost twice as important as 
economics 

Example Value Tree 
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Workshop – Value Tree 

• Complete just the first level 
for your value tree aimed at 
“proper technical evaluation” 

– Show potential items such 
as tractability, quality, ease 
(or not) of analysis, 
controversy (or not), cost, 
etc. 

– Aim for a maximum of 5 or 
6 primary values 

– Try to assign weights 
(where the weights should 
sum to 1.0) 
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Uncertainty Identification 

• Tools and Techniques for 
identifying uncertainty 

– Questioning attitude required 
to identify uncertainties 

– Comparisons between model 
predictions and “reality” 

– Do the results make logical 
sense 

– Quantitative methods 

• Uncertainty propagation 
through a model 

• Predictive models 

– Critical thinking 

“Information Theory, Inference, and 

 Learning Algorithms” D. MacKay 

E.g., Separating “knowns” from 
assumptions 
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Uncertainty Identification 

• Critical thinking is important 

– The process of thinking about an issue by which the quality of 
thought is improved 

• Requires active control of the thought process 

– Key elements to this process include 

• Identifying and clearly describing questions and concerns 

• Obtaining and evaluating relevant data and information 

• Questioning internal assumptions and biases (Why?  How 
do we know?  Have we validated that?) 

• Understanding possible implications of internalized 
information 

• Expressing internalized information via written and verbal 
communications 
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Uncertainty Identification 

• Sparse data results in large uncertainties 

• However, data alone might not be sufficient 

– Data must be applicable to the problem at hand 

• Issues that might “invalidate” available data 

– Aging, environment, operating conditions 

– Outside normal situation 

– Simply not applicable 

– Data must be interpreted correctly 

• Failures and successes need to be critically evaluated 

The analyst needs to question the basis for each step of this 

assessment to determine if it is sufficiently complete and 

accurate to produce a robust answer 
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Uncertainty Identification 

• Model uncertainties 

– Is model appropriate for the problem 

– Boundary conditions 

• Is the system truly “as built”? 

• Do we understand how it is 
operated, and is that modeled? 

– Extrapolations/Interpolations 

• Are the model relationships 
linear/nonlinear? 

• Does the application require 
extending beyond modeling or 
observed bounds? 

– Assumptions 

• Identify key assumptions 

• How do we define predictive accuracy for 
models? 

– Need to think about observed versus 
unseen data 

• We are interested in prediction of 
unseen data, rather than the data 
used to construct the model 

• However, observed data and engineering 
knowledge… 

– Indicates plausibility of model 
prediction for unseen data 

– We are not 100% certain though since 

• Observed data may not be 
representative 

• Engineering knowledge may be 
flawed 

What might be behind the tree… 
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Identifying the Uncertainties 

• What are some questions one might ask to identify significant 

uncertainties? 

– Does current in-service inspection explicitly verify extent of 

degradation? 

– Does laboratory or test data cover range of 

parameters/boundary conditions found in the plant? 

• E.g., application extrapolated beyond bounds of tests 

– Was expert elicitation used to compensate for lack of relevant 

data? 

– Did experts previously predict that the observed phenomenon 

would not occur? 

– Were the modeling assumptions only partially satisfied in 

practice? 

– Is complex or poorly understood phenomena a part of the 

process? 

Can you think of any other?? 
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Identifying the Uncertainties 
• Need to think “outside the box” 

• For example, if I assume a flow 

accelerated corrosion model is not 

applicable 

– I assign it a zero probability 

• However, this is an extreme 

position to take 

• Simply stating this probability does 

not make it true 

– At the start, begin by 

questioning models and 

assumptions 

– Discounting issues to start may 

lead to DM problems later 
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Models are an Estimate of Reality 

• Observables such as pressure, temperature, wall 
thickness are estimated from models 

– How well we make these predictions of degradation 
effects impacts the… 

• Probabilities of failure.  How well we predict 
probabilities of failure impacts… 

– Risk (either on the likelihood or the 
consequences) 

• These estimates affect our risk-informed decisions 
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Models are an Estimate of Reality 

• We need to be able to translate our knowledge of 
models into (ultimately) impacts on our decisions 

Is our model 

providing 

adequate 

prediction of 

pump 

performance? 

IAEA-TECDOC-1395 
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Models are an Estimate of Reality 

• In order to connect our modeling approaches to our 
decision processes, we decompose models into two 
types 

– Deterministic models     &      Probabilistic models 

http://images.google.com/imgres?imgurl=http://www.matf.bg.ac.yu/~dmijuca/th_inc1.jpg&imgrefurl=http://www.matf.bg.ac.yu/~dmijuca/gallery_r&d.htm&h=226&w=328&sz=24&hl=en&sig2=HkswqFD-7-YoKW3iLLtLeA&start=15&tbnid=2c_8QLCp2XNPVM:&tbnh=81&tbnw=118&ei=NmzEROqzLbXaJNq38fwD&prev=/images?q=heat+model&svnum=10&hl=en&lr=&safe=off&sa=G&as_qdr=all
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Deterministic (or mechanistic) 
models 

• Different from probabilistic models 
– This model represents situations where an observable quantity will 

be known given a certain set of parameter values 
– For example, equation E = mc2 is a deterministic model 

• If we know mass m and speed of light c we know the energy E 
• We may not know the energy precisely (we will know it up to 

our certainty in the model parameters) 
• Other special model types have been offered by the scientific 

community 
– A special type of deterministic model is chaotic systems 

• Chaotic system behaves such that small changes to input yield 
behavior that appears to be stochastic 

Definition of deterministic models: 

Pertaining to phenomena-based events (e.g., material degradation), the 

outcome of which is known if the inputs are known with certainty 
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Deterministic models 
• How do we know that models such 

as E = mc2 are correct?  We test! 

• From NIST (2005) 

– By comparing measurements 
of energy emitted and 
measurements of mass of the 
same atoms, found that E 
differs from mc2 by at most 
0.0000004, or four-tenths of 1 
part in 1 million 

– This result is “consistent with 
equality” 

• Unfortunately, such precision will 
never be available for our models 

• Operating data and tests do help 
us validate our models though 

“The Far Side” Gary Larson 
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Probabilistic models 

• For probabilistic models, the outcome – while observable – is not certain 

– We can speak of the probability of particular outcome 

– For example, a pipe failure model may tell us the probability of seeing 
a single failure within the next year of plant operation 

• A traditional example of a probabilistic model is that for radioactive decay 

– We can not say when the next decay process will take place 

– Can estimate the probability of a decay in a time interval 

• If T represents time of decay, then our estimate is 

• Pr(T < t | λ and decay model) = 1 – e-(λ t)  

• Assumptions underlying decay model include 

– Poisson process 

– Constant rate of decay 

• Parameter of the model – decay constant, λ 

 

 

Definition of probabilistic models: 

Pertaining to the probability prediction of experiencing an observable event 

(e.g., probability of a 0.1 gpm leak given material degradation) 
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Deterministic & Probabilistic 
• Interaction between these types of models leads to our “model of the 

world” 

• Our model of the world, or simply model, is a mathematical equation, or 
set of equations, that gives predictions about an outcome of interest 

– The outcome of interest is an observable quantity 

• Note though that we can speak about the probability of seeing an 
outcome (even though probabilities are not observable) 

– The model includes both assumptions and parameters 

• Both of which may be uncertain 

• However, the model output is conditional upon those 
assumptions and parameters 

“All models are wrong, but some are useful.” – George Box 



COLUMBIA 
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Results of Retrospective Analysis on Shuttle Risk 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150

P(LOC)

Chronological Flight Number

Backward-Look PRA Results 
Accounting for Revealed LOC 
Accidents

Backward-Look PRA Results 
Not Accounting for Revealed 
LOC Accidents

RU is the contribution of UU 
scenarios to the P(LOC) level

Final System Risk

RU

Risk from Known Scenarios

Actual Risk (Known + UU Scenarios)

RK

Source: Shuttle Risk Progression: Use of the Shuttle Probabilistic Risk Assessment (PRA) 

to Show Reliability Growth, Teri L Hamlin et al. (AIAA, 2010) (downloadable from  

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110004917_2011004008.pdf) 

“Experience without theory is blind, but theory without 

experience is mere intellectual play” -- Immanuel Kant 



Precursors to Columbia Accident 
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An Accident Precursor Analysis Technical Approach for NASA Space Systems and Pilot Program Application, Draft Final Report, May 2008 



THE CRATER MODEL  
 p= [0.0195(L/d)0.45(d)(ρP)0.27(V-V*)2/3]/[(ST)1/4(ρT)1/6]  

p = penetration depth 
L = length of foam projectile 
d = diameter of foam projectile 
ρP = density of foam 
V = component of foam velocity at right angle to foam  
V* = velocity required to break through the tile coating  
ST = compressive strength of tile 
ρT = density of tile 
0.0195 = empirical constant  

• In 1966, during the Apollo program, engineers developed an equation to 
assess impact damage, or “cratering,” by micrometeoroids.44 The 
equation was modified between 1979 and 1985 to enable the analysis of 
impacts to “acreage” tiles that cover the lower surface of the Orbiter.45 
The modified equation, now known as Crater, predicts possible damage 
from sources such as foam, ice, and launch site debris, and is most often 
used in the day-of-launch analysis of ice debris falling off the External 
Tank.46  
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THE CRATER MODEL  
 • When used within its validated limits, Crater provides 

conservative predictions (that is, Crater predictions are larger 
than actual damage). When used outside its validated limits, 
Craterʼs precision is unknown.  
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Which of the previously-mentioned decision-making 
or modeling faults occurred in the handling of the 
Columbia event?  

• Previously Mentioned:  

– Anchoring 

– Status quo 

– Sunk costs 

– Confirming evidence 

– Estimating and forecasting 

– Incompleteness 

• Hypothesis space 

• Model 

– Normalization of Deviance 
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FUKUSHIMA 
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Tsunami representation 
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Source: Tadashi Annaka, Kenji Satake,  Tsutomu 

Sakakiyama, Ken Yanagisawa, Nobuo Shuto, Logic-tree 

Approach for Probabilistic Tsunami Hazard Analysis and 

its Applications to the Japanese Coasts, Pure appl. 

geophys. 164 (2007) 577–592 

http://link.springer.com/chapter/10.1007%2F978-3-7643-

8364-0_17#page-1 

Have seen one large 

(~15m) event in ~200 

years of reactor 

operation in Japan 

How adequate does this 

model appear? 



Which of the previously-mentioned decision-making 
or modeling faults occurred in the handling of the 
Fukushima event?  

• Previously Mentioned:  

– Anchoring 

– Status quo 

– Sunk costs 

– Confirming evidence 

– Estimating and forecasting 

– Incompleteness 

• Hypothesis space 

• Model 

– Normalization of Deviance 
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Integrated Decision Making 

• Even though results are uncertain, we can use them to help make 
decisions (risk informed decision making) 

• Formal decision process embraces the concept of uncertainty 

– Nobel prizes have been awarded from this “embrace” 

• For example, the stochastic economic model (Black-Scholes 
formula) awarded Nobel in 1997 

– Every real decision takes place under uncertainty 

• Ignoring this uncertainty does not make it go away 

• “PowerPoint engineering” typically has a myopic view of the 
world 

– Need to think critically about the processes one is 
modeling 
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Final Thoughts 

• "Remember that all models 
are wrong; the practical 
question is how wrong do they 
have to be to not be useful” 

– George Box 

• To evaluate “wrongness” we 
need to THINK 

– This is not easy 

– There is no procedure 

– Need to support the 
decision-making process 

Sidney Harris  

Course Objective:  Improve NRC staff’s 
awareness of the factors that contribute 
to uncertainty in predictive models and 
the need to identify, characterize and 
communicate the uncertainties to the 
risk-informed decision-maker 
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Final Thoughts 

• Determining model adequacy is not a trivial process 

• Army Corps of Engineers 

– “…significant part of complexity in describing the uncertainty 
associated with model projections is due to the large number of 
variables, parameters, and performance” 

– “Even if more sophisticated methods were used for model 
calibration and uncertainty analysis…many factors are hard to 
quantify” 

– “Given that an accurate assessment of the complete uncertainty 
underlying such models is unlikely, the use of these models for 
decision making should be accompanied by appropriate 
caveats and disclaimers…” 
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Final Thoughts 

• E. T. Jaynes, Probability Theory – The Logic of Science, 2003 

“In other applications of mathematics, if we fail to use all of the 
relevant data of a problem, the result will not be that we get an 
incorrect answer.  The result will be that we are unable to get any 
answer at all. 

But probability theory cannot have any such built-in safety device, 
because, in principle, the theory must be able to operate no matter 
what our incomplete information might be.  If we fail to include all of 
the relevant data, or to take into account all the possibilities allowed 
…probability theory will still give us a definite answer…but that 
answer may be in violent contradiction to our common sense 
judgments which did take everything into account, if only crudely. 

The onus is always on the user to make sure that all the information 
… is actually incorporated …and that the full extent of his 
ignorance is also properly represented.” 
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Final Thoughts 

• John Sterman (in “All models are wrong: reflections on becoming a 
systems scientist”) describing “Invisible fences in the mind” 

“In affluent suburbs of the United States many dog owners now use 
invisible fences…you bury a cable around the perimeter of your 
yard… After a short training period, you can turn off the collar. The 
dog will still not cross the invisible fence. 

We are just the same. We live in a society that trains us to stay within 
artificial and damaging boundaries far more effectively than any 
invisible fence trains a dog. Much of our education consists of 
getting punished for crossing boundaries… 

These invisible lines in the mind are the boundaries of our mental 
models.” 
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Final Thoughts 

• From Mark Kirk [NUREG-1806 (PTS) project manager] 

“[at] the time of project inception, when us materials folks learned 
that we needed to ‘address uncertainties’ many of us thought 
that all that was needed was to construct uncertainty 
distributions on our input variables (copper, nickel, fracture 
toughness, etc.) and provide these to the programmers 
developing the PFM code.” 

“What we learned is that it is fundamentally impossible to talk 
about how uncertainties are represented in a calculation outside 
of the context provided by the overall model that links all of the 
parameters and sub-models together.” 

“So when we started we really got the cart before the horse ... we 
needed to focus first on building the overall model, not on 
figuring out the standard deviation on copper (for example).” 

“If I were to take one lesson away from PTS it is this: before you 
understand the total model [analysis process] that gets you 
from all of your inputs to your calculated end result you have no 
business talking about uncertainties.” 
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